Large deviations for a feed-forward network
نویسندگان
چکیده
منابع مشابه
Feed forward neural network entities
Feed Forward Neural Networks (FFNNs) are computational techniques inspired by the physiology of the brain and used in the approximation of general mappings from one nite dimensional space to another. They present a practical application of the theoretical resolution of Hilbert's 13 th problem by Kolmogorov and Lorenz, and have been used with success in a variety of applications. However, as the...
متن کاملSignal Prediction by Layered Feed - Forward Neural Network (RESEARCH NOTE).
In this paper a nonparametric neural network (NN) technique for prediction of future values of a signal based on its past history is presented. This approach bypasses modeling, identification, and parameter estimation phases that are required by conventional parametric techniques. A multi-layer feed forward NN is employed. It develops an internal model of the signal through a training operation...
متن کاملGlobal Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network
The optimum design of solar energy systems strongly depends on the accuracy of solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322 N lo...
متن کاملMax-Entropy Feed-Forward Clustering Neural Network
The outputs of non-linear feed-forward neural network are positive, which could be treated as probability when they are normalized to one. If we take Entropy-Based Principle into consideration, the outputs for each sample could be represented as the distribution of this sample for different clusters. Entropy-Based Principle is the principle with which we could estimate the unknown distribution ...
متن کاملMargin-Based Feed-Forward Neural Network Classifiers
Margin-Based Principle has been proposed for a long time, it has been proved that this principle could reduce the structural risk and improve the performance in both theoretical and practical aspects. Meanwhile, feed-forward neural network is a traditional classifier, which is very hot at present with a deeper architecture. However, the training algorithm of feed-forward neural network is devel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Probability
سال: 2011
ISSN: 0001-8678,1475-6064
DOI: 10.1017/s0001867800004985